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A muiti-domain, Chebyshev collocation method is presented for the
solution of ultra-thin gas bearing problems. The behavior of the flow
varies across the computatignal domain with very sharp gradients
occurring in the side and trailing edge boundary layers. The decomposi-
tion of the computational domain allows independent control over the
representation of the solution in each subdomain, A multi-parameier
continuation scheme is used to facilitate the convergence as the
parameters of the problem are varied over a wide range. The method is
shown to be well suited for the simulation of lubrication flow between
textured surfaces even in the presence of very steep pressure boundary
layers. € 1993 Academic Press, Inc.

1. INTRODUCTION

Hydrodynamic lubrication has received much attention
since it was discovered in the late 19th century that i thin
layer of fluid separating two surfaces in relative motion
facilitates that motion. Such thin flutd films are referred to
as fluid bearings. When the relative motion itself brings
about a force large enough to provide the nccessary
separation, a self-acting bearing is said to have developed.
Seif-acting bearings find widespread use, especially in high-
speed, low-friction, precision instruments, such as magnetic
disk drives. The disk drive relies on an air bearing to help
support the read/write head a fraction of a micrometer away
from a magnetic disk spinning at thousands of revolutions
per minute. The head carries the magnetic transducer that is
used to read {rom and write to the disk. When the drive is
started, the disk begins to spin with the head dragging along
its surface. The rubbing action between the two surfaces
generates iarge friction forces that subject the two surfaces

* Parts of this work were performed while this author was in the
mathematics department at Southern Methodist University, Dallas, Texas
75275.
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to wear. Since these forces are proportional to the relative
velocity between the disk and the head, early head lift-off is
highly desirable. In order to help the surfaces resist stiction
and scparate at the lowest possible velocities, disks are
artificially textured during manufacturing with circum-
ferential grooves of characteristic dimensions in the sub-
micrometer range.

Due to viscous entrainment, air is pulled through betwen
the surfaces of the head and the disk and is compressed in
the wedge-shaped clearance, giving rise to an air bearing.
Bearing pressure and flow rate increase as the spinning
velocity of the disk increases. When the normal force
generated by the air bearing exceeds the weight of the head
and the force applied by the flexare arm from which the
read/writc head is suspended, the head takes off and begins
to fly over the disk surface. The nominal clearance between
the head and the disk, called the “flying height,” is around
0. ym in current magnctic drives. The continued thrust
toward smaller drives and larger bit recording densities con-
tinues at a very rapid pace. The accurate simulation of the
air bearing plays an essential role in the design of new head
shapes that will allow higher recording capacities through
reductions in {lying heights. The simulation of an air bearing
interface is accomplished by the solution of the Reynoids
equation of lubrication and requires the bulk of the
computational effort involved in the design process. The
inclusion of surface roughness eflects greatly intensifies
the computational effort, but it is becoming unavoidable
since the nominal flying heights and the surface texture
amplitudes are now of the same order of magnitude,

In the past decade, several researchers have investigated
the effects of surface roughness on the head/disk air bearing
interface. The majority of the simulations have used finite
difference and some finite element methods. Both methods
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have proved satisfactory thus far, especially when most
designs have ignored the effects of surface roughness: An
example of a finite eclement solution of an air bearing
problem is that of Mitsuya [6] in which he investigated the
effects of molecular slip flow on smooth air bearings. White
and Nigam [14] presented a factored-implicit, finite
difference method for the solution of the Reynolds equation
for thin air bearings. White et af, {167 used the same method
to study the effects of stationary surface roughness on an
infinitely wide, wedge gas bearing. Raad and White [10]
added a taper to the slider and showed that surface rough-
ness effects are local in nature, making the results applicable
to & wide range of bearing configurations. Raad and Kuria
[9] extended the analysis to include roughness patterns on
both the stationary and translating surfaces. Varghese and
Raad [13] used a second-order accurate finite difference
method to solve the transient Reynolds equation for
three-dimensional roughness configurations on both the
stationary and translating surfaces. They found that, in
general, a minimum of 20, and as many as 120, grid points
per roughness wave were necessary to accurately resolve the
spatial and temporal variations in the air pressure. Some
of the flow parameters that were studied accentuated the
degree of nonlinearity of the problem, making it necessary
to employ the higher number of grid points per texture
wave. The large grid point per wave requirement by finite
difference methods motivates the need to investigate higher
order methods. Recently, spectral methods have been
gaining popularity and have proven effective for the
solution of problems in computational fluid dynamics [3].

This study presents an investigation of the use of
Chebyshev spectral collocation methods to accurately solve
the Reynolds equation with a significant reduction in the
required number of degrees of freedom per texture wave. At
high fluid velocities and low flow clearances, pressure
boundary layers develop near the side and trailing edges of
the bearing. The dramatically different flow behavior in the
different regions of the computational domain demands the
use of an efficient domain decomposition strategy. In this
work, a four-subdomain decomposition scheme is employed
with three of the subdomains used to describe the boundary
layers,

2. DESCRIPTION OF THE PROBLEM

Fluid flow between closely separated, nearly parallel
surfaces in relative motion is governed by the Reynolds
equation of hydrodynamic lubrication which is derived
from the Navier-Stokes equations by making the usual
lubrication assumptions of negligible inertia and gravity
effects. Given the ultra-thin spacing of bearings, the pressure
gradient in the perpendicular direction between the two
surfaces vanishes. The resulting Reynolds equation of
lubrication represents a balance between viscous and
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FIG. 1. Geometry of air bearing bgtween stationary rough slider and
translating smooth disk.

pressure diffusion effects in two dimensions. Considering
an isothermal state, the flow of a gas bearing between a
stationary slider and a translating surface is governed by

i aP F ap i
— (WP =+ R = (WP=)=A-=(Ph). (2
(?x( Pax)+R ay( Pay) o (Ph). (21)

The above Reynolds equation is applicable to flow between
two surfaces in relative motion even when the surfaces are
rough. However, when the local rate of change in the rough-
ness becomes very large, the assumption of a negligible
pressure gradient across the film thickness no longer applies
and the Reynolds equation breaks down. This type of
roughness is referred to as Stokes roughness and requires
the solution of the Navier-Stokes equations instead of the
Reynolds equation. In this work, the roughness used is
sinusoidal in nature and is representative of the artificial
texture fabricated into the disks during manufacturing in
order to help the moving surfaces resist stiction,

The clearance height of the slider geometry shown in
Fig. 1 is given by

h(x5 }’) = hin + (I - hin)x + gx Sin(anx)

+é&,sin(B, ¥+ ¢). (2.2)

All the variables are non-dimensional and are defined as
follows:;

* Superscript indicating a corresponding dimen-
sional variabie.
h Dimensionless bearing spacing, h(x, y) =

B*(x, y)/hg.
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h Mean trailing edge clearance, m.
Bin Dimensionless inlet bearing spacing, hy,=
. h¥0, y)/h§.
Slider length, m.
L} Slider width, m.
Number of waves in the x-direction.
Number of waves int the y-direction.
P Dimensionless fluid film pressure, P(x, y)=
PX(x, y)/P].
Ambient pressure, Pa.
R Aspect ratio, =L¥/L}.

U* Axial relative velocity, m/s.

w Dimensionless load per unit width, =, [ (P—1)
dx dv.

X Dimensionless axial space coordinate, =x*/L¥.

y Dimensionless transverse space coordinate,
=y*/Ly.

B. Angular frequency of the stationary roughness in
the x-direction, =2r NWX.

B, Angular frequency of the stationary roughness in
the y-direction, =2n NWY.

£, Dimensionless roughness ampilitude in the
x-direction, =¢}¥ /Af.

£, Dimensionless roughness amplitude in the
y-direction, =e*/hf.

¢ Phase angle for y-directional waves, radians.

A Dimensionless gas bearing number, = (6u*U*L¥)/
(PXhShT).

p* Dynamic viscosity, N-s/m?>.

3. THE NUMERICAL METHOD

Only half the computational domain is considered due to
symmetry about the y = 0.5 line. This region is divided into
four subdomains as shown in Fig. 2. In each subdomain the
solution is approximated by P/(x, y), where

AM;

-% Y,

m=0 n=0

T (x) T'(p), i=LIL IIL IV,

(3.1)

The polynomials T¢ (x), i=1, II, III, IV are the shifted
Chebyshev polynomials on the intervals [0, x,], [0, x,],
[x4 1], [x4 1], respectively. The polynomials 77 (y), i =1,
I1, III, TV are the shifted Chebyshev polynomials on the

i(x.,0.5
E(0,0.5) (x4,0-3) D(1,0.5)
G 1v
F0.,y,) “a¥dl L hy
II I
C(1,0)
A(0,0) B(Xd,o)

FI1G. 2. Domain decompasition into four subregions.

intervais [ y,, 0.57, [0, o1, [0, y41, [ ¥4, 0.5], respectively.
To make the approximation conforming, that is, to force the

pressure to be pointwise continuous at all the points on the
subdomain interfaces, we need to take

My=M,, My =M, N =Ny, Nivy=N,.

The collocation points in each subregion in the x- and
y-directions are taken to be the Gauss—Lobatto points [2].
In each region { (i =1, I1, II1, IV), the differential equation
is satisfied at the collocation points (x%.y.), K=1, ..,
M,~1; L=1,.., N,— 1, where the points {x}}, K=0, ..,
M, and {y}}, L=0, .., N, are the Gauss—Lobatto points
for subregion i in the x- and y-directions, respectively. The
boundary condition on FE (regionI) is collocated at all
N7+ 1 collocation points, whereas the boundary condition
on EI (region I) is collocated at M, points (all the Gauss-
Lobatto points except for the first one). In region II, the
boundary condition on AF is imposed at Ny points ( the
first point is excluded). The boundary condition on BA is
imposed at all M; + 1 points. In region HI, along CB, the
boundary condition is imposed at all M+ 1 collocation
points, whereas along HC, the boundary condition is
imposed at Ny;; points {excluding the first point). Finally in
region 1V, on DH the boundary condition is collocated at
all Ny + 1 points and the boundary condition on ID at M,
points (excluding the first point). Because the boundary
conditions are constants, the above choice of collocation
points ensures that all boundary conditions are satisfied
identically along the entire boundary.

On the interface between I and I1 the following continuity
conditions arc imposed:

P](le! yd)=PlI(x2= yd’): K= ls"'s MI! (32’)
J 17
é;Pl(x'm yd)=a_y Pl(x¥,pak K=1,.,M;—1 (33)
(recall that M= M,).
Between IT and IIL,
Pll(xdsy )_P[H(xda y"I > Lzls--'s Nlla (34)
66 Pli(xds Y )_ Pl"(xds yIIl)’ L= 1, vy NlI -1
(3.5)
(recall that Ny = Nypp).
Between 111 and TV,
Pm( P Ya)= P”(X‘,}’, Ya)k K=0,.,Myu—1, (3.6)
é 0
5 — PU(xg, y d)=0—‘_PIV(x2{!yd)s K=1,.,My,—1
(3.7)

(recall that M= M)
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Between regions IV and I,

Plxy, y) =PV (x0 vy, L=1,.,Ny—1  (38)
a 1 1 a v v
ap(xd’y[_)=ap (xduyi,), L=1"“’NIV_1

(3.9}

(recall that ¥, = Ny }. Finally, the differential equation is
satisfied at the point G of region IV.

The above choice of interface conditions ensures that the
approximation to the pressure solution is continuous at all
points across the element interfaces. The normal derivatives
of the approximation are continuous at a finite number of
points (ie., the collocation points). For details concerning
Poisson problems, see Karageorghis [5].

The total number of equations is equal to M=
(M + 1THNy + D)+ (Mg + D(Ng+ 1)+ (Mg + LN+ 1)
+ (M + 1} Ny + 1) which is equai to the total number of
unknown coefficients {a’ 3}, m=0,.., M,;;n=0,..,N,;and
i=1 1L III, and IV.

Solution of the Algebraic System. The discretization
described in the previous section results in a mixed system
of algebraic equations which needs to be solved for the
unknown coefficients {«),, }, m=0, .., M ;n=0, .., N;and
i=1 11, 1L, and TV.

The system is solved using the NAG modification [7] of
the hybrid Powell method [8] which is implemented in the
NAG routines COSNBF and CO5SPBF. In the former, the
user is not required to provide the Jacobian of the system
(which is calculated internaily), while in the latter the user
is required to provide the Jacobian of the system, resulting
in substantial savings in CPU time. In this study, the
Jacobian was calculated exactly and provided to COSPBF.

For relatively small degrees of nonlinearity, both NAG
solvers converged to the solution of the problem from the
plane P.(x, y)=1, i=1, 1L, IIL, IV (ie., by initially taking
ap=1, a,, =0, mn>0). For larger degrees of non-
linearity, however, convergence became gradually more
difficult to achieve, and the use of a continuation scheme
became necessary -[12]. Initially, continuation in A4 was
employed primarily. For large values of A, when more
degrees of freedom were required to satisfactorily represent
the solution, continuation in the coefficients a',,, was used as
well (by adding more coefficients with zero values). When
the thicknesses of the boundary layers decreased, x, and y,
were changed accordingly through continuation. Finally,
for cases involving two-dimensional texture and large
values of the bearing number, continuation in the wave
amplitudes, &, and ¢,, was performed as well. The
implementation of this multi-parameter continuation
scheme provided a mechanism for independent control of
the problem parameters and resulted in substantial savings
in the computational effort.

Once the coefficients {a’ | were evaluated, the pressure
distribution was calculated from Eq. {3.1) at selected points
in the computational domain. A useful physical quantity in
the study of air bearing dynamics is the force generated by
the air against the stationary and translating surfaces. This
force, referred to as the load, was calculated from

W=2 Lm Ll (Pix, y)— 1) dx db.

(3.10)

The factor of 2 is the result of symmetry about the y =0.5
line. Clearly,

W2 j:ﬂ Ld Pl(x, p) dx dy
+2 Lyd L:d PMx, y)dx dy
+2 j:"jl P(x, ) dx dv

+2f”2jip“’(x dx dy —
) dedy—1. (311)

Yd xd

M M

The first integral yields
Y X an, T T (y)dxdy
m=0 n=0

1/2 ~xy4
2[ ]
vd 1]
M) Ny

-2 3 ¥ b ([T ax)

m=0 n=10

([ ),

Vd

(3.12)

where the definite integrals may be calculated exactly by the
use of the properties of Chebyshev polynomials (see Fox
and Parker [4]). For example,

[T de=F T - TIO) (13)

j:" Thx) dx =" [Thxa) ~ THO)), (3.14)

x x[TE . {x)—TL . (0)
TI & —d m+ L\td m+ 1
L mlx) dx 4[ met 1
_ T, {xa)=T,,_.{0)
m—1

]. (3.15)

4, NUMERICAL RESULTS

A total of three bearing geometries were investigated. In
all cases, the ratio of inlet to trailing edge heights, &,,, was
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2, and the bearing’s aspect ratio, R, was 10. This choice of
geometric parameters was motivated by current read/write
head designs [1]. :

4.1. Case 1: Smooth Bearing. Fluid flows through the
gap between the stationary and translating surfaces due to
viscous entrainment. The fluid enters with a pressure equal
to ambient and is compressed as it flows toward the side and
trailing edges. Since the pressure on all sides is ambient, the
pressure of the compressed fluid must return to ambient
when the fluid exits either through the side or through the

trailing edges. As a result, boundary layers are generated
near those edges with thicknesses of orders A~'? and A",
respectively (11, 137,

Figures 3a and b show combined surface and contour
plots of the pressure distribution over the computational
domain for A = 2000 and 4 = 10°, respectively. The side and
trailing edge boundary layers are evident for both cases, but
are difficult to discern in the figures due to the closeness of
the contour lines. An enlargement of a portion of the trailing
edge boundary layer in Fig 3a is shown in Fig 3c,
providing a better view of the pressure variations in that

1

FIG. 3. (a) Pressure profile for a smooth beatring: A =2000 (P, =L, P..= 1.7, 4P =005). (b) Pressure profile for a smooth bearing; 4 = 10°
(Prin=1, Prax = 1.95, AP =0.05). (¢) Enlarged view of trailing edge boundary laver region in Fig. 32 (Pn = 1, Pnax = 1.325, AP =0.025).
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TABLEI

Convergence Results for a Smooth Bearing with A =2000,
x,=099,y,=0.1, and Ny=N =N, =N, =4

M= My My =My W
14 14 0.219540
16 14 0.219754
18 14 0.219879
20 14 0.219950
20 16 0.219952
20 18 0.219953
20 20 0.219952

region. In these and all subsequent combined surface and
contour plots, the figure caption includes the values of the
minimum pressure contour, P, the maximum pressure
contour, P_,., and the increment, AP. The ambient
pressure contour, P =1, always coincides with the x =0 and
y=10 axes, but also may occur inside the computational
domain. When it does, the P =1 contour is identified by a
rectangular symbol. The P_,, contour is identified by a
circular symbol while the contour of the smallest sub-
ambient pressure, when present, is identified by triangular
symbols.

As the bearing number, A, increases, the fluid velocity
increases, and the side leakage decreases. Since more fluid is
entrained toward the trailing edge, higher pressures are
generated and, in turn, higher loads are obtained. Given the
boundary layer thicknesses expected for the casec of
A =72000, x, and y, were set equal to 0.99 and 0.1, respec-
tively. The nuiber of expansion coefficients was increased
until the numerical results no longer changed,' and this
was achieved for M;=M;=20, M\uy=M;y=16, and
Ni=Np=Ny=Nyy=4. A summary of the continuation
procedure used to achieve convergence for the preceding
case is shown in Table L

When A was increased to 10°, the thickness of element 111
{or IV) had to be reduced to 5 x 10~ while the resolution
in the x-direction was increased to M;= M, =22, and
M =M;,=38. Since the pressure variations in the
y-direction are relatively smooth, a small number of degrees
of freedom is required even for large values of 4. The use of
four elements makes it possible to independently increase
the number of degrees of freedom in the regions where sharp
pressure gradients occur. The effect of increasing the gas
bearing number {either by increasing the translating surface
velocity or by decreasing the clearance height) on the ioad
carrying capacity is shown in Fig. 4. As the bearing number
approaches infinity, the load tends asymptotically to a

! To determine convergence the following criteria were examined: (a) the
pressure profiles, both graphically and quantitatively; (b} the magnitudes
of the coefficients; and (¢) the generated bearing load.
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FIG. 4. Comparison of loads generated by a smooth slider and a slider
with two-dimensional waviness (NWX =5, NWY =4, ¢, =¢,=0.15).

constant value, W= 0.3863. This phenomenon can be easily
shown by analyzing the Reynolds equation for A — o,
which becomes

F)
a—(P(x,y)h(x,y))=0 (4.1)
X
= P(x, y)hi(x,y)=C, a constant. (4.2)
But #(0, y) = hy, and P(0, y)=1,
= P(x, y)=hin/h{x, ). (4.3)
Then,
w=[ | [PCey)=11dxdy
=j1jl[ i —l]dxdy (4.4)
0o Jo LA{x, »)

which is equal to 0.3863 for the given geometric parameters.
Physically, as 4 — oo, the Couette effects represented by
Ad(Ph)dx become dominant over the pressure diffusion
terms on the left-hand side of the Reynolds equation (2.1).
Of course, these pressure diffusion terms remain important

0.6 } !
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0.2 i 5
0 0.2
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FIG. 5. Effect of wave amplitude and frequency on the bearing load.
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inside the boundary layers and enable the pressure to return
to ambient on the edges of the slider. Therefore, the solution
to the limiting case, A = oo, represents the “outer” solution
and is useful in validating the numerical results as 4 — co.

4.2. Case 2: Stationary Texture in the x-Direction. The
motivation for considering texture comes from the fact that
in current disk drives the nominal head flying heights are of
the same order of magnitude as the average amplitude of the
texture. Therefore, the effects of surface texture must be
included in the simulation of self-acting, ultra-thin, air
bearings.

In contrast to finite difference or finite element methods,

2"\ 2525
22 G S
s LS00 RIS
L5, M, S
o A Sl NI (K]
s e Ml ik
T 0 S i)
1 L 1 "

spectral methods require fewer degrees of freedom to
describe large spatial variations in the function [2, p. 259].
To demonstrate the effectiveness of the Chebyshev spectral
collocation method, a small number of waves was
prescribed on the stationary surface. Figure 5 shows the
influence of the roughness amplitude and frequency on the
bearing load for two, three, and five waves. Higher wave
amplitudes give rise to larger pressure and clearance
gradients with proportionally larger loads ensuing. These
gradients which constitute the non-linear terms on the left-
hand side of Eq. (2.1) are triggered by the presence of the
surface texture and contribute to the rise in pressure. As
shown in Figs. 6a—¢, the increase in the wave amplitude

FIG. 6. (a) Pressure profile for a slider with five waves in the x-direction, and A =2000: &, =02 (Pnin =1, P =2, 4P =0.1). (b) Pressure profile
for a slider with five waves in the x-direction, and A4 =2000: &, =04 (P =1, Ppax =2.6, 4P =0.2). (¢) Pressure profile for a slider with five waves in

the x-direction, and A =2000:£,=0.6 (P_;, =08, P,, =4, 4P=02).
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{(from 0.2 to 0.6) gives rise to larger pressure extrema, larger
local pressure gradients, and steeper pressure boundary
layers. The increase in the degree of non-linearity that
results from larger amplitudes as well as the dramatic
changes in the spatial gradients make it necessary to
increase the number of degrees of freedom. In contrast, the
frequency of the sinusoidal texture appears to have a slight
effect on the load for the number of waves considered.
The decrease in load with increasing frequency is slightly
more significant at higher values of the wave amplitude
even though the overall load behavior is qualitatively
similar, For all three solutions, x,=0995 vy,=0.1,
Muy=My=14 and Ny= N, =N;,=N,y=4. Fore=0.2,
0.4, and 06, M =My=731, 35 and 49, respectively,
Because the bearing number was fixed, the thicknesses of
the boundary layers remained unchanged, requiring the
same number of degrees of freedom in elements II1 and IV
for all values of ¢ considered. A significant reduction in the
number of degrees of freedom required per texture wave was
observed in comparison to previously used finite difference
methods [13]. In the latter work, a minimum of 20, and as
many as 120, grid points per texture wave were necessary to
resolve accurately the spatial variations in the air pressure.
In addition, when Chebyshev spectral collocation was used
without decomposition, a large number of collocation
points was required to resolve the boundary layers on the
edges of the domain, resulting in a finer-than-necessary
resolution inside the computational domain.

A note of physical interest can be made with regard to
sub-ambient pressures seent in Figs. 6a and b. Since the
pressure varies as the inverse of the clearance height for
large values of A (per Eq. (4.3)), an increase in the clearance
height (such as the one that can be noted near x = 0) results
in a decrease in the pressure. But, since the pressure at x =0
is ambient, any decrease in the pressure will give rise to a
region of sub-ambient pressures. Such a region may be
observed also in Fig. 8 which will be discussed in the
following section.

4.3. Case 3: Stationary Surface Texture. The last case
considered involved stationary texture with five waves in the
x-direction and four waves in the y-direction. The wave
amplitude in each direction was set equal to 0.15, resulting
in a total maximum blockage effect of 0.3. Figure 7 shows
the clearance as well as the distribution of the Gauss-
Lobatto collocation points used. As noted previously,
computations were performed over half the bearing width
due to symmetry about the y=0.5 line. For the height
function, #(x, v), to be symmetric about y = 0.5, a 90° phase
shift {¢) was included in the calculations (see Eq. (2.2)). The
domain decomposition and spectral expansion parameters
for this case are listed in Table IL

The pressure solutions for the three A values, 102 103
10°, are plotted in Figs. 8a—c, respectively. Clearly, larger

FIG. 7. Bearing two-

and four-subdomain,
dimensional Gauss-Lobatto collocation grid (NWX =35, NWY=4,
e, =&,=0.15).

clearance profile

values of the bearing number result in significantly narrower
trailing edge boundary layers. To allow a closer inspection
of the pressure variations in the trailing edge region of
Fig. 8b, an enlargement of a portion of that region is
provided in Fig. 8d. The advantage of the multi-element for-
mulation is confirmed upon examination of Table 11, where
it can be seen that much higher grid resolutions may be
implemented in regions I and I'V without directly affecting
regions I and 1L In the latter regions, approximately five
collocation points per wave are required to accurately
resolve the pressure spatial variations. The same observa-
tion can be made concerning the waviness in the y-direction.
Since the thickness of the side boundary layer (near x =0)
is of O(A4~12), a proportionally smaller number of colloca-
tion points is required to resolve the relatively smaller trans-
verse (or v) pressure gradients. The shape of the clearance is
manifested through the pressure field with the details
becoming sharper as A increases. As previously discussed,

TABLE 1
Variation of Geometric and Expansion Parameters for
£,=¢,=0.15
Ay, X My=M, M; =My Ni=Ny Ny=~Nn
107 0.1 099 20 18 8 6
10 0.1 0995 20 x 8 6
10° 0.1 09995 22 36 12 6
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FIG. 8. (a) Pressure profile for a slider with NWX =35, NW¥ =4, and ¢, =¢,=0.15 4= 102 (Poin =096, P, =126, AP=002). (b) Pressure
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NWY=4,and e, =¢,=015 A= 10° (Pyin=1, P, =23, AP =0.1}. {d) Enlarged view of trailing edge boundary layer region in Fig. 8b (Ppin=1,
P =135 4P=045).

P(x, y) is proportional to 1/h(x, y) as A — oo, which sup- presence of any roughness on the stationary surface
ports the observed pattern in Fig. 8c, where two humps in  increases the load-carrying capacity (Fig. 5) of the wedge
the yp-direction and five in the x-direction can be clearly bearing, even at high values of the aspect ratio where more
identified. The influence of the clearance height on the of the flow rate leaks through the side and does not
pressure, stemming from the non-linear gradients on the contribute to load generation. However, these results are
left-hand side of the Reynolds equation (2.1}, is present in  qualitatively similar for other choices of aspect ratio and
all three solutions but is most evident in Fig. 8¢. The wave amplitude. Furthermore, since roughness effects are
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local in nature the conclusions of the numerical experiments
should be applicable to other bearing geometries besides the
specific wedge bearing considered in this study.

5. CONCLUSIONS

A four-subdomain, Chebyshev spectral collocation
method for the solution of the Reynolds equation of lubrica-
tion was presented. A careful choice of the number of
collocation points, where the interface conditions were
applied, ensured pointwise continuity of the pressure across
ail subdomain interfaces. Further, collocation points were
chosen on the boundaries such that the Dirichlet and
Neumann conditions were satisfied identically on their
corresponding segments. Relatively fewer degrees of
freedom per wave were required to accurately resolve the
wavy nature of the pressure solution. The domain decom-
position strategy used made it possible to independently
vary the number of degrees of freedom in the side and
trailing edge boundary layer regions in order to accurately
capture the sharp pressure gradients therein. A multi-
parameter continuation scheme was utilized, allowing the
independent control of the progress of the solution from one
bearing number or wave amplitude level to the next, all the
while reducing the amount of computational effort required.
The apparent success in handling the highly non-linear
nature of the Reynolds equation suggests that the present
method is well suited for the solution of uitra-thin gas
bearing problems. The use of different sets of basis functions
is presently being investigated for the class of problems
where surface waviness ts replaced by higher frequency
texture.
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